Facial recognition designed to detect around face masks are failing, study finds


Algorithms designed specifically for face masks are getting stumped, researchers found.

Sarah Tew/CNET

For the most up-to-date news and information about the coronavirus pandemic, visit the WHO website.

Many facial recognition companies have claimed that they can detect people with pinpoint accuracy even while they’re wearing face masks, but the latest results from a study show that the coverings are dramatically increasing the error rates. 

In an update on Tuesday, the US National Institute of Standards and Technology looked at 41 facial recognition algorithms submitted after the COVID-19 pandemic broke out in mid-March. Many of these algorithms were designed with face masks in mind, and claimed that they were still able to accurately identify people, even when half of their faces were covered. 

In July, NIST released a report noting that face masks were thwarting regular facial recognition algorithms, with error rates ranging from 5% to 50%. NIST is widely considered as the leading authority on facial recognition accuracy testing, and expected algorithms to improve on identifying people in face masks. 

That day has yet to come, as every algorithm experienced marginal increases in error rates once masks came into the picture. While some algorithms still had accuracy overall, like Chinese facial recognition company Dahua’s algorithm error rate going from 0.3% without masks to 6% with masks, others had error rates increasing up to 99%. 

Rank One, a facial recognition provider used in cities like Detroit, had an error rate of 0.6% without masks, and a 34.5% error rate once masks were digitally applied. In May, the company started offering “periocular recognition,” which claimed to be able to identify people just off of their eyes and nose. 

TrueFace, which is used in schools and on Air Force bases, saw its algorithm error rates go from 0.9% to 34.8% once masks were added. The company’s CEO Shaun Moore told CNN on Aug. 12 that its researchers were working on a better algorithm for detecting beyond masks. 

The companies did not respond to a request for comment. 

While every facial recognition algorithm suffered a higher error rate once masks got added, some error rates were as low as 3%, indicating that it’s not impossible for algorithms to identify people even when their faces are covered. 

Face masks are proven tools for limiting the coronavirus’s spread, and governments around the world have mandated people wear coverings to reduce the outbreak’s impact. Health experts expect the majority of people will need to continue wearing masks for years, pushing facial recognition companies to improve their algorithms.

NIST has an ongoing report on how the masks have affected facial recognition algorithms, using 6 million images from its database, and digitally adding a mask onto the photos.  

It’s possible that the error rates could be higher if NIST used real photos of people in masks, rather than a digitally added covering, since physical masks may have different shading, textures and patterns that also confuse algorithms. 

The information contained in this article is for educational and informational purposes only and is not intended as health or medical advice. Always consult a physician or other qualified health provider regarding any questions you may have about a medical condition or health objectives.

Source Article